新年前夕,国家主席习近平通过中央广播电视总台和互联网,发表二〇二三年新年贺词。新华社记者 鞠鹏 摄
新华社北京12月31日电新年前夕,国家主席习近平通过中央广播电视总台和互联网,发表了二〇二三年新年贺词。全文如下:
大家好!2023年即将到来,我在北京向大家致以美好的新年祝福!
2022年,我们胜利召开党的二十大,擘画了全面建设社会主义现代化国家、以中国式现代化全面推进中华民族伟大复兴的宏伟蓝图,吹响了奋进新征程的时代号角。
我国继续保持世界第二大经济体的地位,经济稳健发展,全年国内生产总值预计超过120万亿元。面对全球粮食危机,我国粮食生产实现“十九连丰”,中国人的饭碗端得更牢了。我们巩固脱贫攻坚成果,全面推进乡村振兴,采取减税降费等系列措施为企业纾难解困,着力解决人民群众急难愁盼问题。
疫情发生以来,我们始终坚持人民至上、生命至上,坚持科学精准防控,因时因势优化调整防控措施,最大限度保护了人民生命安全和身体健康。广大干部群众特别是医务人员、基层工作者不畏艰辛、勇毅坚守。经过艰苦卓绝的努力,我们战胜了前所未有的困难和挑战,每个人都不容易。目前,疫情防控进入新阶段,仍是吃劲的时候,大家都在坚忍不拔努力,曙光就在前头。大家再加把劲,坚持就是胜利,团结就是胜利。
2022年,江泽民同志离开了我们。我们深切缅怀他的丰功伟绩和崇高风范,珍惜他留下的宝贵精神财富。我们要继承他的遗志,把新时代中国特色社会主义事业不断推向前进。
历史长河波澜壮阔,一代又一代人接续奋斗创造了今天的中国。
今天的中国,是梦想接连实现的中国。北京冬奥会、冬残奥会成功举办,冰雪健儿驰骋赛场,取得了骄人成绩。神舟十三号、十四号、十五号接力腾飞,中国空间站全面建成,我们的“太空之家”遨游苍穹。人民军队迎来95岁生日,广大官兵在强军伟业征程上昂扬奋进。第三艘航母“福建号”下水,首架C919大飞机正式交付,白鹤滩水电站全面投产……这一切,凝结着无数人的辛勤付出和汗水。点点星火,汇聚成炬,这就是中国力量!
今天的中国,是充满生机活力的中国。各自由贸易试验区、海南自由贸易港蓬勃兴起,沿海地区踊跃创新,中西部地区加快发展,东北振兴蓄势待发,边疆地区兴边富民。中国经济韧性强、潜力大、活力足,长期向好的基本面依然不变。只要笃定信心、稳中求进,就一定能实现我们的既定目标。今年我去了香港,看到香港将由治及兴十分欣慰。坚定不移落实好“一国两制”,香港、澳门必将长期繁荣稳定。
今天的中国,是赓续民族精神的中国。这一年发生的地震、洪水、干旱、山火等自然灾害和一些安全事故,让人揪心,令人难过,但一幕幕舍生取义、守望相助的场景感人至深,英雄的事迹永远铭记在我们心中。每当辞旧迎新,总会念及中华民族千年传承的浩然之气,倍增前行信心。
今天的中国,是紧密联系世界的中国。这一年,我在北京迎接了不少新老朋友,也走出国门讲述中国主张。百年变局加速演进,世界并不太平。我们始终如一珍视和平和发展,始终如一珍惜朋友和伙伴,坚定站在历史正确的一边、站在人类文明进步的一边,努力为人类和平与发展事业贡献中国智慧、中国方案。
党的二十大后我和同事们一起去了延安,重温党中央在延安时期战胜世所罕见困难的光辉岁月,感悟老一辈共产党人的精神力量。我常说,艰难困苦,玉汝于成。中国共产党百年栉风沐雨、披荆斩棘,历程何其艰辛又何其伟大。我们要一往无前、顽强拼搏,让明天的中国更美好。
明天的中国,奋斗创造奇迹。苏轼有句话:“犯其至难而图其至远”,意思是说“向最难之处攻坚,追求最远大的目标”。路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。
明天的中国,力量源于团结。中国这么大,不同人会有不同诉求,对同一件事也会有不同看法,这很正常,要通过沟通协商凝聚共识。14亿多中国人心往一处想、劲往一处使,同舟共济、众志成城,就没有干不成的事、迈不过的坎。海峡两岸一家亲。衷心希望两岸同胞相向而行、携手并进,共创中华民族绵长福祉。
明天的中国,希望寄予青年。青年兴则国家兴,中国发展要靠广大青年挺膺担当。年轻充满朝气,青春孕育希望。广大青年要厚植家国情怀、涵养进取品格,以奋斗姿态激扬青春,不负时代,不负华年。
此时此刻,许多人还在辛苦忙碌,大家辛苦了!新年的钟声即将敲响,让我们怀着对未来的美好向往,共同迎接2023年的第一缕阳光。
祝愿祖国繁荣昌盛、国泰民安!祝愿世界和平美好、幸福安宁!祝愿大家新年快乐、皆得所愿!
谢谢!
把科技穿在身上,既有温度也有风度******
仿造鹅绒、碳纳米管加热膜、人体红外反射材料……
把科技穿在身上,既有温度也有风度
在刚刚过去的春节假期,受寒潮天气影响,全国部分地区气温大幅下降,处于“速冻”模式中。
来自中央气象台的信息,节日期间,我国东北、华北部分地区,气温创今冬新低,黑龙江省漠河市最低温度甚至跌至零下53摄氏度。
为了防寒,连不少“要风度、不要温度”的年轻人,都穿上了厚实的外套。
不过,想御寒保暖,不必非要把自己裹成“粽子”。如今,用在冬衣上的“黑科技”能够帮助人们“既有风度、也有温度”。
“人体热量的散失是由于热传递造成的,热传递有3种基本方式:传导、对流和辐射。”天津工业大学纺织科学与工程学院高级工程师、博士生导师夏兆鹏在接受科技日报记者采访时介绍道,为了达到保温效果,在设计上冬季防寒衣物要尽一切可能减少热量经由这3种途径流失,冬季保暖材料及保暖服装也都是围绕着这一原理进行研发和设计的。
仿造鹅绒:
即使被浸湿也能实现保暖效果
“冬天人体与外部低温环境间存在巨大温差,这就造成热传导,即热量会从温度高的地方传导到温度低的地方。如果在衣服中加入低导热系数的高蓬松保暖填充物,就可以阻止热传导,进而减少人体热量散失,达到保暖的目的。”夏兆鹏介绍道,这类保暖填充物主要起阻隔热传导的作用,目前比较常见的天然材料有棉、毛、羽绒等,比较常见的化学纤维材料有中空涤纶、喷胶棉等。
与传统保暖填充材料相比,近年来出现了一些新型保暖填充材料,其中具有代表性的就是仿鹅绒结构高保暖絮片。这种填充材料不仅保暖性强、轻便,而且在潮湿的环境下依旧可以持续保暖。在2022年北京冬季奥运会上,中国运动员的防寒服中就用这种仿鹅绒结构高保暖絮片作为填充材料,其在完全浸湿的条件下仍然能够达到98%的保暖率。
“仿鹅绒结构高保暖絮片的主要成分是与鹅绒纤维直径长度相差不大的仿造鹅绒,同时混入远红外涤纶和热熔涤纶。”夏兆鹏解释,其中仿造鹅绒以中空涤纶和Y形涤纶为主体,这两种涤纶可以最大限度地储存静止空气,而静止空气可以较好地保存热量。此外,即使是在被水浸湿的情况下,中空涤纶和Y形涤纶依然可以储存一定的静止空气。
仿鹅绒结构高保暖絮片能够克服天然鹅绒显臃肿、有异味、易跑绒和价格高等缺点,同时具有超轻、超薄、湿态保暖、高蓬松度等特点,而且洗涤后回弹性好、不缩水、保暖率不降低。
碳纳米管加热膜:
通电即发热,温度可调控
采用加热材料制作的电热服是国内外研究最多的冬季服装之一。
“常见的加热材料有镍铬加热丝、复合加热丝、碳纤维加热丝、碳纳米管加热膜等,这些材料被内置于衣服中制成电热服,当电热服连上充电设备后,电流经过衣服内部的加热材料就会产生热量,仿佛把电热毯披在身上。”夏兆鹏介绍,除此之外,该类衣服还内置了传感器,通过蓝牙即可实现对衣服的智能控温,用户只需要下载一个App,就可以用手机随时调整衣服的温度。
其中,碳纳米管加热膜作为控温加热系统中的重要元件,具有非常好的应用前景。“碳纳米管加热膜可以反复水洗,耐弯折次数达到10万次以上,而且薄膜厚度约为几十微米,具有非常好的柔性,发热效率大于65%。”夏兆鹏补充道。
除此之外,价格相对便宜的金属丝线性加热元件,如镍铬加热丝、复合加热丝等,也是加热“能手”。
“金属丝类材料具有高导电性、良好的电加热性能,且具有传感、电磁屏蔽等性能。以复合加热丝为例,其是在金属丝中添加了钼,既减少了金属的氧化,同时还可以提高金属电加热元件的耐用性。”夏兆鹏介绍道,将含有钼的金属丝,通过冷拉伸工艺变成微米级金属微丝,使其由金属丝转变为纤维。该纤维可以与聚酯纱线混纺制备成纱线,用其制作出的织物具有导电性。
相较普通导电织物,这种导电织物的柔性及舒适性都有所提升。“其柔性及形态与传统纤维及纱线十分接近,舒适性也得到提升。”夏兆鹏表示,不过,这类制衣材料仍然存在不耐长时间水洗、比较重等缺点。
人体红外反射材料:
人体热辐射反射率可达60%
红外热辐射是人体热量损失的另一种形式,传统纺织品的红外辐射率高、热量损失快,有研究指出棉花不可避免地会以中红外形式辐射出人体50%以上的热量。而人体红外反射材料则可以通过将人体发出的红外波反射回人体的方式减少红外热辐射损失,以达到保暖的效果。
“人体红外反射材料多数由金属颗粒构成,这些颗粒以一种微结构形式存在,将此材料附在织物上,便形成了红外波反射层。该反射层可以把人体辐射的大部分红外波都反射回来,从而达到保温效果。”夏兆鹏补充道。
“人体红外反射材料通常被用来制作冬装外衣的内衬,一般其人体热辐射反射率可以达到60%,提高服装防寒保暖效果比较明显。”夏兆鹏表示,不过,如果长时间处在超低温环境下,由于人体辐射的热量有限,因此该材料或无法达到理想的保暖效果。
聚四氟乙烯微孔膜:
低温环境下既透气又防水
冬季户外可能会出现下雨、降雪、霜冻等天气,通过高密防水层阻挡雨、雪、霜的侵入,可避免因衣物内层保暖材料被浸湿而导致保暖系数降低、保暖效率下降甚至失效。
“防水材料是在高密织物外面附上一层聚四氟乙烯微孔膜、水性聚氨酯膜或者聚氨酯膜。”夏兆鹏解释道,聚四氟乙烯微孔膜每平方厘米有十多亿个孔,在低温环境下,这些孔洞的开孔率可以达到80%。该孔的直径比水蒸气分子的直径大700倍,因此人体产生的汗蒸汽可以从中通过,从而保持衣服的透气性。聚四氟乙烯微孔膜上孔的直径比一般水的直径小很多倍,因此外面的液态水无法通过,从而达到了防水的目的。(科技日报 记者 陈 曦)
(文图:赵筱尘 巫邓炎)